Beach Monitoring in Milwaukee: Assessing and Communicating the Risk

Presented By:

Mary Ellen Bruesch Beach Project Coordinator

City of Milwaukee Health
Department
Division of
Disease Control and Prevention

Locations of Milwaukee

History of Beach Monitoring in Milwaukee

- ▲ 1960s Twice-weekly sampling at select beaches and within harbor for E. coli and fecal coliform
- ▲ "pollution research" vs. "health risk assessment"

History of Beach Monitoring in Milwaukee

- ▲ Early 1980s "rainfall predictive model" developed for South Shore beach
 - -> .30 inches of rainfall
 - 24 hr. "lag effect"
 - 1-4 day "closure" period
 - -watershed "plume effect"
 - -approx. 50% predictive

History of Beach Monitoring in Milwaukee: EMPACT

- ▲ 1998 EPA- Environmental Monitoring for Public Access and Community Tracking ("EMPACT")
 - -7 day per week monitoring
 - -predictive model refinement/development (addl' beaches)
 - -"real time" monitoring of select variables
 - -new format and content for risk communication (postings, website and hotline)

Beach Monitoring 1998-2002: 1. Testing for Indicator Bacteria (*E. coli*)

▲ Test results in 18-24 hours

2. Evaluation of Environmental Conditions (and environmental influences on beach)

3. Preparation of Advisory

- ▲ Review of previous sampling data (E. coli and rainfall)
- ▲ Use of predictive models

 Bradford

 South Shore

PILOT MODELS: BRADFORD Prepared by Dr. Greg Olyphant

Regression Results: Predictive Equation for Bradford Beach

$$InEc=b_0 + b_1R + b_2Wv + b_3CSO + b_4Tw + b_5Algae + b_6 + e$$

Ec = E.coli concentration in surf zone at Bradford (BB).

R = Rainfall (yesterday + today) at real-time meteorological station.

Wv = Wind vector (onshore component) on previous day based on data from real-time meteorological station.

CSO = Combined sewage overflow volume from MMSD.

Tw = Temperature of lake water from spot measurement.

Algae = From field observation (1=low, 2=moderate, 3=high

© = Turbidity of lake water from grab sample.

e = Error term, assumed to be random and uncorrelated.

PILOT MODELS: SOUTH SHORE Prepared by Dr. Greg Olyphant

Regression Results: Predictive Equation for SSB

$$InEc = b_0 + b_1R + b_2Wv + b_3Tw + b_4C + b_5pH + b_6O + b_7CSO + e$$

Ec = E.coli concentration in surf zone at South Shore Beach (SSB).

R = Rainfall (yesterday + today) at real-time meteorological station.

Wv = Wind vector (onshore component) on previous day based on data from real-time meteorological station.

Tw = Temperature of lake water from SSB sonde.

C = Conductivity of lake water from SSB sonde.

pH =Negative log of hydrogen ion concentration from SSB sonde.

⊕= Turbidity of lake water from SSB sonde.

CSO = Combined sewage overflow volume from MMSD.

e = Error term, assumed to be random and uncorrelated.

4. Public Notification: Website, Hotline

Find out about today's water quality at the beaches

Beachhealth

Coordinated by Milwaukee and Racine Health Departments

Date Warning Was Issued

Time Warning Was Issued

Site Name

Person Who Entered Info Warning Level Beach Closure?

Most recent E Coli Count (CFU/100mL)

5. Public Notification: Beach. Coordination with Milwaukee County Lifeguards and Parks

6. Evaluation

▲-Website and phone hotline counts

▲-EMPACT Surveys

▲-BEACH Act-related surveys done in Summer, 2002

7. Education and Outreach

▲ Pollution Prevention Outreach and Education efforts:

Boat waste outreach flyers

7. Education and Outreach

▲ Pollution Prevention Outreach/Education efforts:

Beach Sweeps

▲ Work with other agencies on pollution prevention projects

2003 Beach Monitoring Program: New Regulations

- ▲ Response to EPA's Beach Environmental Access and Coastal Health (BEACH) Act (2000)
- ▲ Applies to all components of beach monitoring and public notification

BEACH Act in Milwaukee

- ▲ State provides grant money to support additional monitoring costs, supplies, additional labor
- ▲ 2003 = "Pilot" Year throughout State (Beach Act Workgroup/public review)

Prioritization of Beaches

- ▲ Based on access, use, number of swimmers, water quality history, pollution sources
- ▲ High, Medium, Low Priority

Number of Samples per Week

→ High Priority (est. 24 beaches in WI)
5 per week

- ▲ Medium Priority (est. 36 beaches in WI) 2 per week
- ▲ Low Priority (est. 40 beaches in WI)

 1 per week

Changes in Beach Monitoring in Milwaukee

- ▲ Upgrades to monitoring, advisories and public notification
- ▲ No changes to sampling frequency and season, environmental data recording
- ▲ "Beach Season" ("open" swimming season) longer

1. 2003 Beach Testing

- ▲ All 3 beaches (Bradford, McKinley and South Shore) "High Priority"
- ▲ Will be monitored 7 days per week
- ▲ 2 sites at Bradford (length of beach)
- ▲ Monitoring starts May 5, ends September 30 (Season runs May 24-September 21)

3. Advisories 2003

▲ Can continue to use predictive models (Bradford and South Shore Beaches)

Monitoring in Milwaukee:

Number of

Samples

1

1

1

per Beach

Monitoring

Frequency

7x/week

7x/week

7x/week

Length of

Season

May 19

through

May 19

through

May 19

through

September

September

21

21

21

September

Number of

Samples per

Reach

2

1

1

MILWAUKEE NEW			Past	and	Pr	ese	nt
	ח	C	DEACH	A 4		A C	בת

Reach

Bradford

McKinley

South Shore

After BEACH Act, 2003 Before BEACH Act

Length of

Mid June-

Mid-August

Mid June-

Mid-August

Mid June-

Mid-August

through

through

through

Season

Monitoring

Frequency

7x/week

7x/week

7x/week

3. Advisories in 2003

- New "2 Standard Deviations" threshold

 Event or E. coli level (recent or predicted)

 greater than higher threshold (based on

 2002 season GMs)=CLOSED
 - -Bradford: 1348 MPN/100 mL
 - -McKinley: 1076 MPN/100 mL
 - -South Shore: 1872 MPN/100 mL

Preparation of Water Quality

	Auviso	ory							
Recent or predicted E. coli levels and									
correspondi	ng possible	advisories							
	Good	Poor	Clo						

<235 **Bradford** >235, check waves

losed Event or >1348, check waves <235 >235 check Event or

waves

McKinley

< 235 South Shore >235

>1076, check waves Event or >1872

E. Coli Levels at Bradford Beach 2002

4. Public notification: Wisconsin Beachhealth Website, Hotline

Welcome to the Southeastern Wisconsin Beach Health website

Date Warning Was Issued Site Name Person Who Entered Info Warning Level Closure? Most recent E Coli Count (CFU/100mL)

5. Public Notification at Beach

WATER QUALITY TODAY IS

GOOD

BASED ON RECENT MONITORING FOR E.COLI BACTERIA

CONTACT INFORMATION

5. Public Notification at Beach

WARNING WATER QUALITY TODAY IS POOR

Based on recent monitoring for E. coli bacteria

Potential Sources of Pollution

- •Urban run-off
- •Storm & combined sewers
- •Wild animal & pet waste
- •Illegal discharge of boat sewage
- •Wastewater treatment plant overflows

What Can I Do to Reduce Pollution?

- •Pick up litter, especially diapers
- •Bag pet waste and deposit in waste containers
- •Do not feed gulls and waterfowl
- •Conserve water
- •Avoid using chemical fertilizers

SPECIFIC CONTACT INFORMATION GOES HERE

5. Public Notification at Beach

STOP CLOSED

Based on recent monitoring for E. coli bacteria Serious Risk of illness may be present

THIS BEACH IS CLOSED TO SWIMMING

SPECIFIC CONTACT INFORMATION

Future Directions

- ▲ Faster Tests
- ▲ Better Models ("neural networks," USGS, others)
- ▲ Better Risk Communication for populations using the beach (Spanish, Hmong)
- ▲ New Channels of Outreach and Education
- ▲ Assess Variability (spatial and temporal)

